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RGB-‘D’ Saliency Detection With Pseudo Depth
Xiaolin Xiao , Yicong Zhou , Senior Member, IEEE, and Yue-Jiao Gong , Member, IEEE

Abstract— Recent studies have shown the effectiveness of using
depth information in salient object detection. However, the most
commonly seen images so far are still RGB images that do not
contain the depth data. Meanwhile, the human brain can extract
the geometric model of a scene from an RGB-only image and
hence provides a 3D perception of the scene. Inspired by this
observation, we propose a new concept named RGB-‘D’ saliency
detection, which derives pseudo depth from the RGB images
and then performs 3D saliency detection. The pseudo depth can
be utilized as image features, prior knowledge, an additional
image channel, or independent depth-induced models to boost
the performance of traditional RGB saliency models. As an
illustration, we develop a new salient object detection algorithm
that uses the pseudo depth to derive a depth-driven background
prior and a depth contrast feature. Extensive experiments on
several standard databases validate the promising performance of
the proposed algorithm. In addition, we also adapt two supervised
RGB saliency models to our RGB-‘D’ saliency framework for
performance enhancement. The results further demonstrate the
generalization ability of the proposed RGB-‘D’ saliency frame-
work.

Index Terms— RGB-‘D’ saliency, pseudo depth, salient object
detection.

I. INTRODUCTION

SALIENT object detection aims at identifying the most dis-
tinctive and informative regions that grab human attention

in images or videos [1]. Recently, this area has witnessed
intensive studies and extensive applications to a variety of
image processing and computer vision tasks, such as object
recognition [2], image segmentation [3], visual tracking [4],
and image and video compression [5].

Existing methods can be categorized into unsupervised
and supervised approaches. Unsupervised methods [6]–[18]
identify the salient objects through low-level feature extrac-
tion from the intrinsic cues of a specific image. They
are usually computationally efficiency. Supervised learning
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methods [19]–[27] always require sufficient labeled images
for the training procedure. These algorithms generally perform
better than the unsupervised models. However, it is tough to
manually label the salient objects in images and is usually
time-consuming to train the models.

With the emergence of new cameras and laser scanners such
as Microsoft Kinect and SICK LMS 291, RGB-D salient object
detection has received increasing attention [28]–[31]. Intu-
itively, it would be very useful to utilize the depth information
of images to identify the salient objects, since depth provides
rich information on scene layout, shapes of objects, and other
3D cues [29], [30]. This information is highly consistent with
human perception that can help to discriminate the foreground
objects from the background. However, currently there are
some limitations for 3D saliency detection. For example,
the collection of RGB-D saliency databases is more expensive
than that of RGB saliency databases, especially in outdoor
scenes. This is because the widely used Microsoft Kinect is
more suitable to capture indoor scenes due to the restriction
of depth of field. When it comes to outdoor scenes, more
expensive laser scanners are needed, e.g., SICK LMS 291. In
addition to the challenge of data collection, the processing
of the physical depth is complicated. Due to the different
positions of the depth sensors and the color cameras, the raw
depth and color images are in different coordinate systems
and should be projected into the same coordinate space for
alignment [32]. More importantly, there always exist miss-
ing or erroneous holes and regional gaps on the raw depth
images. Such types of errors may come from the random noise
of sensors, object reflection, shadows of the light patterns, etc.
To avoid the propagation of errors into subsequent processing,
the inpainting of the raw depth maps is necessary and the task
itself is challenging [33]. Overall, these problems restrict the
usage of the RGB-D images, and hence RGB saliency still
dominates practical applications.

Considering the above issues, this paper proposes a new
concept that derives a pseudo depth cue to assist saliency
detection. The proposed pseudo depth measure is proper
for both indoor and outdoor scenes. The adjective ‘pseudo’
here indicates that the depth is not the practical data sensed
by physical devices, but instead it is estimated from the
RGB images and is consistent with human perception. We
name algorithms based on this concept as RGB-‘D’ Saliency
Detection, where many opportunities of developing new and
effective saliency models are opened up under this RGB-‘D’
saliency framework. Specifically, we develop a pseudo depth
measure, named semi-inverse image depth, which is robust for
estimating the scene depth in various types of images. This
measure provides unique benefits in saliency detection since,
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in most cases, the salient objects capturing human attention
are foreground objects in the images.

As an illustration, we develop a new RGB-‘D’ salient
object detection algorithm exploiting the proposed pseudo
depth. We will show that, compared with the widely adopted
color and texture cues, the pseudo depth is informative and
reliable, especially for the challenging images that endure low
contrast, complex background and structures. In the proposed
algorithm, a new background prior based on the pseudo depth
is proposed. We also devise a foreground contrast map via
aggregating the color, texture, and pseudo depth features.
The foreground contrast and background prior are then fused
together, through minimizing the data and smoothness loss
of a cost function. We keep the algorithm work in a simple,
intuitive, and straightforward way to observe the effective-
ness of the RGB-‘D’ saliency detection. Experiments on
several benchmark databases verify that the proposed algo-
rithm achieves the state-of-the-art performance. In addition
to designing the above algorithm, we also incorporate the
RGB-‘D’ saliency detection concept into two existing RGB
saliency algorithms. The performance enhancement observed
in both algorithms validates the good generalization ability of
the proposed RGB-‘D’ saliency framework.

Generally summarized, the novel contributions of this paper
lie in the following aspects:

1) We propose the new concept of RGB-‘D’ Saliency Detec-
tion. The letter ‘D’ is enclosed in the quotation marks since
it does not indicate the real depth data of an RGB-D image.
Instead, we first estimate the depth information from an RGB
image, and then apply the pseudo depth as a complementary
cue to boost the performance of RGB saliency models. This
new concept opens up opportunities of developing new and
powerful saliency detection algorithms, either in a super-
vised or unsupervised way.

2) We develop a pseudo depth measure named Semi-inverse
Image Depth. This pseudo depth measure successfully captures
the scene depth in various types of images and provides a
perceptually consistent cue to discriminate the salient objects
from the background.

3) Based on the pseudo depth measure, we devise a
new saliency prior named ‘Pseudo-Depth-Driven Background
Prior’. The prior provides a robust characterization of the
background probability of the pixels in an image.

4) As an illustration of the proposed RGB-‘D’ saliency
framework, an algorithm termed ‘Saliency Detection based
on Pseudo Depth Prior (PDP)’ is proposed. The algorithm
fuses the proposed background prior and a foreground contrast
map together to obtain the saliency map. It achieves promising
experimental results compared with the state-of-the-arts. The
success of PDP verifies the advantages of using the proposed
RGB-‘D’ saliency concept for developing powerful saliency
detection algorithms with hand-crafted features.

5) We also adapt two supervised RGB saliency models to
the RGB-‘D’ saliency framework. The experimental results
further validate the effectiveness and the generalization ability
of the proposed framework.

In the rest of this paper, Section II reviews the background
knowledge. Section III poses a simple yet effective pseudo

depth measure. Based on that, in Section IV, we define the
concept of RGB-‘D’ saliency detection and propose a new
algorithm for salient object detection based on this concept.
In Section V, we compare the proposed algorithm with the
state-of-the-arts. Then we exploit the RGB-‘D’ framework to
improve the performance of existing RGB saliency models in
Section VI. Finally, conclusions are drawn in Section VII.

II. RELATED WORK

In this section, we briefly review the literature on salient
object detection and depth estimation methods.

A. Salient Object Detection

Salient object detection is a popular research area that many
approaches have been developed in the last decade. Generally,
existing models can be categorized into two groups: RGB
saliency and RGB-D saliency.

1) RGB Models With Intrinsic Cues: The unsupervised
models identify the salient objects by considering the intrinsic
cues of each input image only.

The pixel/regional contrast has been widely used since
it is highly consistent with the human perception system in
identifying the most distinctive object(s) in an image. Saliency
Filters (SF) was designed in [7] by exploiting the color and
spatial contrast of small regions. Cheng et al. [12] propose
a more accurate evaluation of global contrast by defining
the histogram based Regional Contrast (RC). Although it is
perceptually intuitive, the contrast cue may suffer problems
when the salient object(s) and the background are similar in
appearance [6].

To address the limitation of the contrast cue, many
algorithms concentrate on exploring effective priors and
have shown promising results. The background priors are
used to correctly reject the non-salient part of an image.
For example, the boundary prior [6], [9], [10], [13] and
the boundary connectivity prior were developed (e.g., Geo-
desic Saliency (GS) [6] and Robust Background Detec-
tion (RBD) [34]). In addition, the center prior [8], focusness
and objectiveness priors [11] have been proposed. Usually,
these priors become less effective when the specific assump-
tions are violated. For instance, when the salient objects touch
the image borders, the performance of the boundary prior
decreases [35].

Another popular category exploits the diffusion-based
techniques by propagating the saliency information in an
image graph. Algorithms in this class can generate visually
smooth saliency maps due to the diffusion scheme. A graph-
based Manifold Ranking (MR) [9] method was proposed
to rank the saliency scores of both foreground and back-
ground seeds and these scores were fused to get the final
saliency map. Jiang et al. [10] use the absorbing time of
a Markov Chain (MC) to evaluate the saliency values of
graph nodes. Later, new propagation schemes were devel-
oped using Cellular Automata (CA) [15], [16] and Minimum
Spanning Tree (MST) [17], respectively. The diffusion process
may also incorrectly suppress the salient region when the
salient object touches image borders. Recently, Lu et al. [13]
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use the pixel-level dense and sparse reconstruction (DSR)
errors and Bayesian integration to overwhelm this limitation,
and Zhou et al. [18] solve this problem via Diffusion on a
Sparse Graph (DSG). These methods may fail to identify the
whole salient object(s) since most of the graph-based methods
ignore the consistency among different parts of the salient
objects [11], [36].

Further, hierarchical-segmentation-based saliency detec-
tion was proposed in [37] (HS) and now has been commonly
adopted for improving the detection robustness to salient
objects with different scales. The studies in [13], [14], [16],
and [36]–[38] exploit multi-scale segmentation and then fuse
the saliency maps from different scales. Meanwhile, priors
from different scales (e.g., object prior, focusness prior, spatial
distribution prior) have been integrated with existing cues to
assist saliency detection [8], [11], [36]. The hierarchy-based
models show performance enhancement over their single-scale
counterparts, and the idea of integrating the results from
multiple scales can be easily extended to any single-scale
models.

2) RGB Models With Extrinsic Cues: Some recently pro-
posed methods utilize the extrinsic cues, either in the way
of supervised learning or searching similar images [39]. For
supervised learning, the studies in [19], [20], and [40] focus
on feature integration. They learn the saliency scores from
hand-crafted features. Later, the works in [21]–[24], [41],
and [42] integrate the convolutional neural network features
into this framework, in order to learn deep feature repre-
sentation and feature integration simultaneously. In contrast,
many other methods exploit different learning strategies to
fuse the weak saliency models. A pioneering work [19] learns
to combine different features using conditional random field.
Then, Tong et al. [25] and Lu et al. [26] design a Bootstrap
Learning (BL) algorithm to combine weak saliency mod-
els. Huang et al. [27] adopt the object proposal algorithm
to generate candidate instances, and then find a decision
boundary via Multiple Instances Learning (MIL). Generally,
models using extrinsic cues have better performance compared
with those using intrinsic cues, while being computationally
more expensive. Besides, the extrinsic-cue-based models rely
heavily on the manually labeled ground truth.

3) RGB-D Models: In addition to the RGB saliency models,
depth information has shown a beneficial effect on saliency
detection. Many studies have proposed RGB-D saliency
models by incorporating the depth cue with RGB images.
These models can also be classified into unsupervised algo-
rithms [28]–[30] and supervised ones [31], [43]. Usually,
the RGB-D saliency models outperform their RGB counter-
parts since the depth map provides rich information on scene
layout, shapes of objects, and other 3D cues [29], [30]. This
makes the RGB-D models feasible to pop out the salient
objects even if they have similar appearances with the back-
ground. However, existing RGB-D models can only deal with
physical depth, which has restricted practical applications.

B. The Pseudo Depth

Estimating depth map from RGB-only images has received
considerable attention in computer vision. In terms of real

scenarios, the human brain possesses a depth perception sys-
tem integrating a variety of cues with respect to RGB-only
images. Intuitively, the existence of edges, junctions and
illumination variations in an RGB image may perceptively
provide a 3D model of the scene [44]. Hence, we can extract
the pseudo depth from RGB images in the absence of the real
depth data to boost saliency detection models.

Generally, the pseudo depth of a scene can be estimated
from multiple images or a single image. Schechner et al. [45]
exploit a polarization-based method for haze removal as well
as generating a pseudo depth map. It requires at least two
input images taken with different degrees of polarization.
He and Yuille [46] adopt a motion estimation algorithm to
find the correspondence among multiple image frames and
then generate the pseudo depth. Microsoft launched a platform
AirSim [47] as an open source simulator for autonomous
vehicles. When the real depth data of the input images are
not available, AirSim can estimate the depth images from
multiple images using stereo algorithms, e.g., [48]. Although
these methods are effective in different scenarios, they are not
applicable to our application since we focus on single image
saliency detection.

Compared with multiple-image-based approaches [45], [46],
single image depth estimation is more challenging since
an RGB image may correspond to different scales of real
scenarios [44]. To reliably estimate depth from a single
image, existing works use feature consistency [49], multi-
scale image features [50], image structures models [51],
and deep neural networks [52], [53], etc. Among them,
Zhang et al. [49] assume uniform color and texture for the
scene and Delage et al. [51] exploit the geometry of floor
and walls, which are suitable for indoor scenes and are not
effective for outdoor images. Meanwhile, the model in [52]
uses specific priors of outdoor scenes and is not suitable for
indoor images. In addition, many other works are based on
high-level features (e.g., the trained predictors) and are time-
consuming in practice.

III. PSEUDO DEPTH FROM MEDIUM

TRANSMISSION MODEL

As this paper aims at deriving a pseudo depth cue for
salient object detection, we prefer a low-level depth model
which is efficient to compute and is compatible with vari-
ous types of images. Inspired by the medium transmission
models [54]–[57] that characterize the light energy transmitted
from the scene to the camera, we exploit a simple yet effective
method to calculate pseudo depth from the distances between
the surfaces of the scene points and the camera.

The medium transmission is the ratio of “the light energy
that is not attenuated by the scene (including foreground and
background) and reaches the observer” to “the real-world light
energy reflected from the scene” [54]. According to the optics
of the atmosphere, the attenuation is caused by the fact that
particles along the transmission route always scatter the light,
and “scattering” means that a particle absorbs a portion of
the incident light and radiates the absorbed light as a light
source [54]. Due to the layout of a scene, the beams of the
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Fig. 1. Illustration of the medium transmission model. The total light energy
captured by the camera is composed of the energies of the scene and the
environment light. Please note that each beam denoted by a cylinder represents
a unit area that corresponds to a pixel on an image, and the transmission map
is spatially dependent.

light from the surfaces of the scene points to the camera have
different transmission routes, and the captured light energies
on different positions of an image contain the distances of
the transmission routes. That is, the medium transmission is
spatially dependent.

Let (x, y) represent the spatial coordinates of a scene
point, t (x, y) measure the corresponding medium transmis-
sion, S(x, y) be the real-world scene radiance. Then S(x, y) ·
t (x, y) measures “the light energy that is not attenuated by
the scene and reaches the camera”, which is also called
scene direct attenuation. On the other hand, particles in the
environment absorb and then radiate the light. This radiated
light energy increases along the route of light transmission as
the number of particles increases, and finally it also reaches
the camera. Statistically, this environment light is spatially
homogenous and can be regraded as a constant vector. Suppose
the environment light is denoted by L, then L · (1 − t (x, y))
measures the energy from environment light.

Given an RGB image I , the above medium transmission
model is represented as

I (x, y) = Es(x, y) + Ee(x, y)

= S(x, y) · t (x, y) + L · (1 − t (x, y)), (1)

where I (x, y) represents an RGB vector at position (x, y),
L is a constant vector, and Es and Ee denote the energies
from the scene and the environment respectively.

As shown in Fig. 1, the total light energy captured by
the camera is composed of two parts, namely, the energy
reflected by the scene and the environment light energy. These
two parts cumulatively decrease and increase along the route
of light transmission, respectively. That is to say, once the
transmission map is obtained, we can calculate the depth value
corresponding to this pixel. The estimated depth data is inverse
proportional to the logarithm of the transmission as

d(x, y) = − ln(t (x, y))

β
, (2)

where β is the scattering coefficient that is a spatial constant
if the physical properties of the atmosphere are homogenous.
Practically, we are more interested in the relative depth than
the physical depth, and the real value of β is less important.

Fig. 2. Pseudo depth maps derived from [54]: (a) an outdoor image;
(b) depth map of the outdoor image; (c) an indoor image; (d) depth map
of the indoor image.

We apply the dark channel prior [54] to estimate the
transmission map t according to Eq. (1). The dark channel
prior is based on the statistics of normal images. It claims
that, in most of the local regions of an image, there exist
“dark pixels” that have very low intensities in at least one of
the R, G, and B channels. According to [54], the transmission
map at position (x, y) can be estimated by

t (x, y) = 1 − φ · min
γ

(
min
�

I (x, y)

L

)
. (3)

where γ ∈{R,G,B} denotes the color channel; � represents
pixels in a local region, e.g., a 15 × 15 patch around (x, y); φ
is a decay parameter that allows slightly energy decrease on the
captured image and it can be fixed at 0.95 as recommended
in [54]. In practice, the constant vector L can be estimated
from the pixel values corresponding to the dark pixels.

However, traditionally, the medium transmission models
are always formulated for the application of outdoor scenes
(such as the haze removal application [54], [55]), which are
inapplicable to the images of indoor scenes. For example,
as shown in Fig. 2, using the transmission model in [54],
the pseudo depth map for the first image is sound, whilst the
pseudo depth map of the second image is incorrect. This is
because, for indoor scenes, the incident light may not come
from the air but from the reflection of electric lights. To solve
this problem, we consider the source of the incident light: if
the incident light comes from the air light, we directly adopt
the medium transmission model; when the incident light comes
from the reflection of the electric lights, we reverse the strength
of the captured images to simulate the real light energy. Based
on this idea, we propose a robust pseudo depth measure termed
semi-inverse image depth. Here, “semi-inverse image” means
that we adaptively inverse the strength of the captured images
according to the estimated light source to fit the real light
transmission scenario of different types of images. Specifically,
for an image I , we define its semi-inverse image as

Î (x, y) =
{

1 − I (x, y), if λ · LT Nc > LT Ns

I (x, y), otherwise,
(4)
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Fig. 3. Illustration of the lightness measure of the central and surrounding
parts of an image.

where LT Nc and LT Ns represent the lightness of the central
and surrounding parts of the image respectively and λ is an
illumination coefficient. As illustrated in Fig. 3, the image
is first divided into 3 × 3 blocks, and LT Nc and LT Ns are
the mean lightness values of pixels in the central block and
in the surrounding blocks, respectively. The coefficient λ is
empirically set to 0.9.

Finally, the medium transmission model in Eq. (1) is
adapted to

Î (x, y) = S(x, y) · t (x, y) + L · (1 − t (x, y)), (5)

and the pseudo depth can be estimated using Eqs. (4), (3) and
(2) sequentially. In the following experiments, we normalize
and invert the estimated depth to obtain the final pseudo depth
for better visualization.

Provided with the consideration of the source of the incident
light, our medium transmission model is suitable for different
types of images. Besides, given an RGB image with m ∗ n
pixels, the transmission map can be computed at the cost of
the order O(mn), which is linear to the image size. Therefore,
this model fulfills our requirement on efficiently extracting
the pseudo depth of images. Fig. 4 shows a few examples
of the semi-inverse image depth, from which the following
observations can be made: (1) The pseudo depth fits both the
outdoor and indoor scenes. It is more generic and robust than
the depth map derived from the outdoor models, e.g., compare
Figs. 4 (a) and (b) with Figs. 2 (b) and (d); (2) The pseudo
depth provides object-level consistency of the salient objects,
e.g., the humans in Figs. 4 (d) and (e). Note that, traditionally,
it is hard to consistently extract the whole objects when parts
of the objects are dissimilar in appearance; (3) It also deals
well with the low brightness and the low contrast conditions,
as shown in Figs. 4 (f) and (g); (4) When there exist cluttered
environments (Figs. 4 (h) and (i)), the pseudo depth shows
stably good performance. To summarize, the pseudo depth
is very good at separating the foreground objects from the
background and is hence useful for the task of salient object
detection.

IV. RGB-‘D’ SALIENCY DETECTION

In this section, we propose a novel concept for salient object
detection, named RGB-‘D’ Saliency Detection, by utilizing the
pseudo depth derived on a single RGB image. We first discuss
the conceptual definition and potential working directions in
this new area, and then propose an algorithm for salient object
detection following this concept.

Fig. 4. Examples of the proposed semi-inverse image depth.

A. Conceptual Definition

The concept of RGB-‘D’ saliency detection is generally
defined as: given a 2D RGB image, deriving a pseudo depth
cue on the image so as to make 2D to 3D conversion of the
image, and then perform 3D saliency detection on the resulting
pseudo 3D image. There are four different perspectives to use
the pseudo depth, which are summarized as follows and will
be verified in the following studies of this paper.

1) Image Features: In salient object detection, an essen-
tial step is feature extraction on the input image. Tradi-
tional algorithms mainly adopt color and texture features.
Now we can further use depth features, which naturally
possess excellent discriminability for separating foreground
objects and the background. We will illustrate this issue in
Section IV-B-2).

2) Prior Knowledge: Most existing saliency detection algo-
rithms use hand-crafted priors, such as the center prior [8],
background prior [6], boundary prior [34], and focusness
prior [11], which are shown to play crucial roles in enhancing
the detection performance. Using pseudo depth, it is now
possible to develop new and potentially better priors, such as
the ‘pseudo-depth-driven background prior’ being described in
Section IV-B-1).

3) An Additional Image Channel: Currently there exist a
number of supervised salient object detection algorithms that
directly learn saliency scores from raw features on RGB
channels and exhibit good performance. The pseudo depth
can be considered as an image channel in addition to the
RGB channels. Then more discriminant features can be learned
from the feature integration procedure. Based on this idea,
an application will be given in Section VI.

4) Independent Depth-Induced Models: Deep features also
show promising performance in saliency detection. We demon-
strate that the pseudo depth can be used to generate indepen-
dent depth-induced models and then to extract deep features
for boosting the performance of saliency detection. An appli-
cation will be provided in Section VI.
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Fig. 5. The pipeline of the proposed PDP algorithm.

Note that RGB-‘D’ saliency detection is a general concept
that it can be applied to develop different unsupervised and
supervised algorithms. In this section, we first develop an
unsupervised model with hand-crafted features and priors,
so as to make it easier to observe and interpret the effectiveness
of the RGB-‘D’ saliency concept. Further extensions with
supervised methods are also feasible under this framework.

B. The Proposed Algorithm

As an application under the framework RGB-‘D’ saliency
detection, we develop an unsupervised algorithm based on
the Pseudo Depth Prior (PDP). The pipeline of PDP is
shown in Fig. 5. The input image is segmented using super-
pixel segmentation algorithms [58]–[60] to generate the basic
processing units. In our experiments, we adopt the simple
linear iterative clustering (SLIC) algorithm [58] to segment
the image into N superpixels due to its efficiency. For each
superpixel, color, depth, and texture features are extracted so
as to compute the respective contrast information. Aggregating
the color, depth, and texture contrast measures, an initial
foreground contrast map is obtained. On the other hand,
we derive a background prior based on the proposed pseudo
depth. The background prior and foreground contrast are then
fused together via optimization. After a postprocessing step,
the algorithm outputs the saliency map of the input image.
We can also conduct a binarization step on the saliency map to
obtain the binary version. The ingredients of PDP are detailed
as follows.

1) Pseudo-Depth-Driven Background Prior: According to
Borji et al.’s [1] comprehensive comparisons of 29 state-
of-the-art salient object detection algorithms, all the top-
performed algorithms explicitly utilize the background priors.
The background priors possess good robustness in identifying
the salient objects. In this work, we propose a novel back-
ground prior based on the pseudo depth.

As depicted in Fig. 4, the background regions of an image
possess much lower depth values than the object regions.
However, for saliency detection, some foreground objects with
high depth values also do not grab human attention, which

would better be classified into non-salient background regions.
Figs. 4 (d) and (i) show some examples like the “stones” and
the “grass”. We can observe that this type of regions, such
as stones and grass, always connect to the image borders.
Zhu et al. [34] developed a boundary connectivity measure
to separate the boundary regions. In this work, we adopt this
boundary connectivity measure to refine our pseudo depth
map. Let {di }N

i=1 be the mean pseudo depth value of each
superpixel and {bdConi}N

i=1 be the boundary connectivity
in [34], the refined depth {d̂i }N

i=1 is calculated as

d̂i =
{

di , if bdConi < τ

0, otherwise
(6)

where the threshold τ is set to 2 as validated by the exper-
iments in Section V-D1. The background strength of each
superpixel is defined as the inverse of its refined depth value

bgStri = 1 − d̂i , (7)

and the background probability of each superpixel is calculated
as

Pbg
i = 1 − exp

(
−bgStr2

i

2 · σ 2
bg

)
, (8)

where i = 1, 2, · · · , N and σbg is a bandwidth parameter that
controls the variance of the generated probability values and is
empirically set to 0.1. Pbg

i is close to 1 when the background
strength is large and is close to 0 otherwise.

2) Foreground Contrast: Besides the background prior,
we define a foreground saliency map by analyzing the contrast
among superpixels, where three kinds of image features are
adopted: color, depth, and texture.

a) Color contrast: We adopt the mean color value of each
superpixel in the CIELAB color space since it is perceptually
uniform with respect to human eyes. That is, the same amount
of the numerical change in this space corresponds to (almost)
the same amount of the visually perceived change [58].
The corresponding color distance between two superpixels
is calculated as distc(i, j) = ||clab

i , clab
j ||2, where clab

i and
clab

j are the color feature vectors of superpixels i and j , and
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|| · ||2 represents the Euclidean distance. The color contrast
map is calculated according to [7] and [12], by summarizing
the spatially weighted color distances of one superpixel to all
the other superpixels:

Ctrc
i =

N∑
j=1

distc(i, j) · exp

(
−||pi , p j ||22

2 · σ 2
spa

)
, (9)

where the weight is based on the distance between the center
positions of superpixel i and j (i.e., ||pi , p j ||2, and σspa is
the bandwidth parameter of the spatial weighting scheme. The
sensitivity of σspa is examined in Section V-D.1), and the
recommended value for σspa is in [0.2, 0.4].

b) Depth contrast: Using the pseudo depth of superpixels
as features, the contrast is calculated based on the distance
between the refined depth d̂i and the minimum depth value of
all superpixels (d̂min = min{d̂i}N

i=1) as

Ctrd
i = 1 − exp

(
−||d̂i , d̂min||22

2

)
, (10)

where d̂min is assumed as the background depth. The
larger distance from the superpixel depth to the background,
the higher contrast value is assigned to the superpixel.

c) Texture contrast: For the texture feature, we use the
differential excitation of the Weber Local Descriptor (WLD),
which has shown to possess good discriminability and robust-
ness [61]. Let hwld

i and hwld
j be the WLD histograms of super-

pixels i and j , the texture distance between the two superpixels
is calculated using the chi-square distance as dist t (i, j) =
χ2(hwld

i , hwld
j ) = ∑bin

b=1

(
hwld

i (b)−hwld
j (b)

)2

hwld
i (b)+hwld

j (b)
, where bin is the

number of bins that represents the number of local texture
patterns that are considered for contrast comparison. It is
empirically set to 6. The texture contrast is then obtained
by summarizing all texture distances of one superpixel to the
others, weighted by their spatial distances:

Ctr t
i =

N∑
j=1

dist t (i, j) · exp

(
−||pi , p j ||22

2 · σ 2
spa

)
, (11)

where the spatial weighting scheme is the same as that in
Eq. (9).

The above color, depth, and texture contrast maps are
visualized in Fig. 6, which capture different characteristic of
the images. It can be observed that the depth contrast plays
an important role in projecting the object level consistency of
the salient objects. Then, the foreground contrast is calculated
based on the Harmonic mean of the three contrast maps:

P fg
i = 3 · (1 − Pbg

i )

(Ctrc
i )−1 + (Ctrd

i )−1 + (Ctr t
i )

−1
, (12)

where (1 − Pbg
i ) is multiplied to enhance the accuracy of

object identification (reduce the recall of background) and
i = 1, 2, · · · , N is the index of superpixels.

Fig. 6. Comparisons of different contrast maps: (a) input images; (b) color
contrast; (c) depth contrast; (d) texture contrast.

3) Saliency Fusion: In the above procedures, two important
cues for salient detection are derived, namely, the background
probability map {Pbg

i }N
i=1 and the foreground contrast map

{P f g
i }N

i=1. Both maps are linearly normalized into the range
of [0, 1]. When integrating these two maps, the final saliency
map should be consistent with the data terms as well as being
spatially smooth to enhance visual consistency. Suppose f =
[ f1, f2, · · · , fN ]T contains the optimal salient values of all
superpixels in the image, it is obtained by minimizing the
cost function

J = Fdata + Fsmooth, (13)

where Fdata and Fsmooth represent the costs produced in the
integration of the background and foreground cues and the
enhancement of spatial smoothness, respectively. Specifically,
they are defined as

Fdata =
N∑

i=1

(
ωbg · Pbg

i · f 2
i + ω f g · P f g

i · (1 − fi )
2
)
, (14)

and

Fsmooth =
N∑

i=1

N∑
j=1

Wij · ( fi − f j )
2, (15)

where ωbg , ωbg , and W are the fusion weights. To relieve the
burden of manually balancing the data terms, we adaptively set
the values of ωbg and ωbg according to their data uncertainty.
In information theory, the larger the entropy is, the more
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uncertainty the corresponding variable contains. To reduce the
uncertainty of the data terms, we set their weights as

ωbg = 1

Hbg
and ω f g = 1

H f g
, (16)

where Hbg = − ∑N
i=1 Pbg

i ·log2 Pbg
i and H f g = − ∑N

i=1 P f g
i ·

log2 P f g
i are the entropy of the background and foreground

probabilities, respectively.
For the smoothness term, the weight matrix W = [Wij ]N×N

is set according to the spatial distances among superpixels as

Wij =

⎧⎪⎨
⎪⎩

exp

(
−||pi , p j ||22

2 · σ 2
spa

)
, if i and j are adjacent

0, otherwise

(17)

where σspa determines the strength of spatial smoothness, and
this spatial weighting scheme is the same as those in Eqs. (9)
and (11). Finally, the optimal superpixel-wise saliency values
can be mathematically deduced as

f = arg min
f

J = ω f g · P f g · 1T

2 · (D − W) + ωbg · Pbg + ω f g · P f g
,

(18)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pbg = diag(Pbg
1 , Pbg

2 · · · , Pbg
N )

P f g = diag(P f g
1 , P fg

2 · · · , P fg
N )

D = diag(
∑N

j=1
W1 j , · · · ,

∑N

j=1
WN j .)

(19)

Afterwards, a fused saliency map S can be generated by
filling the salient values of pixels in the i th superpixel with
the value fi .

4) Postprocessing: Based on the initial saliency map, PDP
further performs a postprocessing step, mainly for the purpose
of visualization enhancement. The procedure is described as
follows.

Let τ be the Otsu’s threshold [62] of the initial saliency
map (S). We define a set of thresholds as {λi · τ }K

i=1, where
λi = i/K . For each threshold λi ·τ , we set the saliency values
that are smaller than this threshold to zero and keep the other
saliency values as they are to generate a refined saliency map
Si , and thus K refined saliency maps {Si }K

i=1 are obtained in
total. The optimized saliency map is then computed as

Ŝ = S + ∑K
i=1 λi · Si

1 + ∑K
i=1 λi

. (20)

Afterwards, Ŝ is linearly normalized in the range of [0, 1] as
the final output. In our experiments, K is set to 5.

V. EXPERIMENTS

To examine the performance of the proposed algorithm,
we compare PDP with the state-of-the-art salient object detec-
tion methods.

A. Datasets and Competing Methods

Four standard datasets are used in the experiments:
MSRA10K [19] includes 10,000 images, and many of them
endure low contrast; ECSSD [37] contains 1000 natural
images that are semantically meaningful but structurally com-
plex; HKU-IS [63] is a newly opened dataset of 4447 natural
images, while most of them have low contrast and contain
multiple objects; and PASCAL-S [64] consists of 850 chal-
lenging images, whereas many images contain multiple objects
in cluttered environment. We compare PDP with the state-
of-the-arts, including 12 unsupervised algorithms (CA [15],
DSG [18], DSR [13], GS [6], HS [37], MAP [65], MC [10],
MR [9], MST [17], RBD [34], RC [12], SF [7]) and two
supervised ones (BL [25] and MIL [27]).

B. Evaluation Metrics

As recommended in [1], we adopt the Precision-Recall
(PR) curve, Area Under ROC Curve (AUC) score, Mean
Absolute Error (MAE) score, F-measure, and weighted-Fβ (w-
Fβ ) to compare the performance of competing algorithms. To
illustrate the evaluation metrics, in the following statement, S
represents the detected saliency map and M is used to denote
the binarized S using thresholds sliding from 0 to 1 with step
1/255; G represents the human-labeled binary ground truth;
| · | stands for the number of pixels in current set, while || · ||1
is the L1 norm distance.

1) Precision-Recall: The precision and recall values are
calculated as follows

Precision = |M ∩ G|
|M| , Recall = |M ∩ G|

|G| . (21)

2) F-Measure: To simultaneously consider the precision
and recall values, the F-measure is calculated as

Fβ = (1 + β2
f ) · Precision · Recall

β2
f · Precision + Recall

, (22)

where β2
f = 0.3 is used to magnify the effect of the precision

scores [1].
3) Area Under ROC Curve (AUC) Score: To evaluate the

predicted saliency maps, the Receiver Operating Characteris-
tics (ROC) curve explores the relationship between the true
positive rate and false positive rate of these saliency maps.
Then AUC calculates the area under the ROC curve and then
concentrates this information into a single score. Higher AUC
scores indicate better performance.

4) Mean Absolute Error (MAE) Score: The MAE score
directly calculates the mean absolute distance between the
predicted saliency map and the ground truth. It is calculated
using ||S − G||1.

5) Weighted F-Measure: To explicitly rank different mod-
els, we also adopt the weighted-Fβ (w-Fβ ) score, which
is more reliable to evaluate the quality of saliency maps,
eliminating the flaws (interpolation, dependency and equal-
importance) of previous metrics like Fβ and AUC. The
detailed formulation of w-Fβ is provided in [66].
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Fig. 7. PR curves of the competing algorithms.

TABLE I

Fβ , W-Fβ , AUC, AND MAE SCORES OF THE COMPETING ALGORITHMS

C. Comparisons With Peer Models

1) Quantitative Evaluation: For the competing algorithms,
we plot their PR curves in Fig. 7. The Fβ , w-Fβ , AUC, and
MAE scores of different algorithms are reported in Table I.
Generally speaking, PDP outperforms or is comparable to the
state-of-the-arts.

More specifically, on the MSRA10K and ECSSD databases,
PDP has the best performance considering the the PR curve,
Fβ , w-Fβ and AUC scores; it also obtains the second lowest

MAE scores. On the HKU-IS database, the PR curve of PDP is
comparable to that of MIL. It ranks the second considering the
Fβ and AUC scores. Compared with the aforementioned eval-
uation metrics, the advantage of PDP on the MAE score is not
so significant. On the HKU-IS database, PDP is outperformed
by some algorithms (e.g., MST and DSR) considering the
MAE score. This is because, the pixel-based methods (MST
and DSR) have natural advantages over the superpixel-based
methods (e.g., PDP) in measuring the pixel-wise absolute
distance. The HKU-IS database has relatively complicated
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Fig. 8. Visual comparisons of the competing algorithms.

scene structures that degrade the MAE score of the saliency
maps produced by the superpixel-based methods like PDP.
Even though, PDP obtains the best w-Fβ value on HKU-IS,
showing that PDP is still competitive among the compared
algorithms on this database. For the PASCAL-S database, PDP
has the best performance according to all evaluation metrics.

Please note that the algorithm structure of PDP is similar
to that of the RBD algorithm. Both of them adopt a back-
ground prior and the global contrast information. Compared
with RBD, the superior performance of PDP validates the
effectiveness of the RGB-‘D’ saliency concept.

2) Visual Comparisons: To present qualitative comparisons,
several saliency maps of different algorithms are shown
in Fig. 8. PDP obtains better visual results than the others,
especially for the instances endure low color contrast (e.g.,
Image 5), cluttered or dark environment (e.g., Images 1, 3,
and 6), object shadow (e.g., Image 4), distracting components
(e.g., the window in Image 2), single object with different
components (e.g., Image 8) and multiple objects (e.g., Images
1, 4, and 7). The good results owe much to the use of pseudo
depth, which is resistant to the aforementioned situations.

D. Discussion

To provide a comprehensive understanding of the proposed
algorithm, this section experimentally examines the properties
of PDP considering (1) the sensitivity of model parameters;
(2) the effectiveness of the pseudo depth cue; (3) the limitation
and failure cases, and (4) the computation cost.

1) Sensitivity of Parameters: In this section, we examine the
performance of PDP over the selection of model parameters.

Experiments are conducted on the ECSSD database and
comparisons are made among the corresponding PR curves.
Specifically, we first investigate the performance of the back-
ground probability map over the threshold of the boundary
connectivity (τ in Eq. (6)); then we examine the sensitivity
of the bandwidth parameters in calculating the background
probability map (σbg in Eq. (8)) and the color (σspa in Eq. (9))
contrast map. Please note that the spatial weighting schemes in
the texture contrast (σspa in Eq. (11)) and the smoothness term
(σspa (in Eq. (17))) are the same as that in calculating the color
contrast, and they have similar performance over the selection
of σspa . For simplicity, these three parameters are set to the
same value 0.4 in all experiments. The PR curves of the feature
maps under the corresponding parameter settings are shown
in Fig. 9. As can been seen, (1) the background probability
map is insensitive to the threshold of the boundary connectivity
for τ = 2, 3, 4, 5; (2) the background probability map has
stable performance when σbg ∈ [0.05, 0.8]; (3) the color
contrast obtains better performance with a moderate spatial
weighting scheme, i.e., σspa ∈ [0.2, 0.4]. To summarize,
the performance of PDP is influenced by the choices of the
aforementioned model parameters, however, it is not highly
sensitive to them.

2) Validation of the Effectiveness of the Pseudo Depth:
The pseudo depth cue provides rich information on the 3D
cues of the scene to assist saliency detection. As it is involved
in calculating the background probability and the foreground
contrast, we investigate the effectiveness of the pseudo depth
cue in these two parts, respectively. For the background
probability, we compare our pseudo-depth-driven background
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Fig. 9. Sensitivity analysis of model parameters on the ECSSD database:
PR curves of the feature maps with different values of (a) the threshold τ of
the boundary connectivity; (b) the bandwidth parameter σbg in the background
probability map; (c) the bandwidth parameter σspa in the color contrast map.

Fig. 10. Validation of the effectiveness of the pseudo depth on the ECSSD
database: PR curves of (a) the background probability maps with and without
pseudo depth; (b) different combinations of the contrast maps.

prior with the background connectivity prior without pseudo
depth; in terms of the foreground contrast, we examine the
performance of the color, depth, and texture contrasts and their
different combinations. The results in Fig. 10 demonstrate the
beneficial effects of the pseudo depth.

3) Failure Cases: As our algorithm adopts the medium
transmission model to generate the pseudo depth, it may
become less effective when the medium transmission model
fails in some cases. Fig. 11 presents some failure examples.
For Image 1, the fur of the cat has poor reflection ability com-
pared with the blanket, and the inferiority is further aggravated
by the large area of the blanket. For Image 2, the multiple light
sources bring the challenge of estimating the light transmission
route, and hence the depth map is disordered. Besides, it is
also hard to generate a reliable pseudo depth from extremely
cluttered scenes, as illustrated in Image 3. Please note that,
under the RGB-‘D’ saliency framework, we can resort to an
advanced depth estimation model to solve the problems in the
first two images since the medium transmission model is easily
affected by the refection of the surfaces of objects.

4) Time Analysis: The computation cost of PDP is linear to
the size of the input image. We implemented it using MAT-
LAB and run it on a platform with i7 3.4 GHz CPU and 16GB
RAM. A single CPU is used in the execution. For images
with 400 × 300 pixels, PDP requires about 900 milliseconds
for processing, among which the calculation of the pseudo
depth costs 85 milliseconds; superpixel segmentation costs
96 milliseconds; feature extraction needs 699 milliseconds;
the calculation of background probability and foreground
contrast information uses 15 and 1 milliseconds, respectively;
the saliency fusion step requires 3 milliseconds; and post-
processing requires 1 millisecond. It can be observed that
most of the computational overhead of PDP comes from the

Fig. 11. Failure cases of PDP.

feature extraction step, while all the other procedures are very
efficient.

VI. FURTHER VALIDATION OF THE RGB-‘D’
SALIENCY FRAMEWORK

As verified in Section V-C, PDP outperforms or is com-
parable to the state-of-the-arts. We use this simple model
with hand-crafted features to demonstrate and interpret the
effectiveness of the proposed RGB-‘D’ saliency concept. To
further validate the generalization ability of this framework,
in this section, we adapt two newly developed RGB saliency
models to our RGB-‘D’ saliency framework for potentially
performance enhancement. A supervised feature integration
method (DRFI [20]) and a method based on DNN features
(AMC [35]) are used as two applications.

A. Integration With Existing Models

DRFI provides a computational model for the supervised
feature-integration-based saliency algorithms. It learns a ran-
dom forest regressor to integrate features for saliency predic-
tion in a discriminative way. DRFI first extracts hand-crafted
features from RGB channels, and then uses these features to
train the saliency predictor. To integrate DRFI with the RGB-
‘D’ saliency framework, we calculate the pseudo depth and
consider it as an additional image channel, and then extract
features from this pseudo depth channel following the process-
ing of the RGB channels. More specifically, we concatenate
the raw depth values, textures of depth, texture histograms of
depth, and the local binary patterns of depth into the original
RGB features and then train a new saliency predictor based on
these RGB-‘D’ features. The adaption of DRFI to its RGB-
‘D’ counterpart validates that the pseudo depth can work as an
additional image channel when integrates with existing RGB
saliency models.

AMC is based on the absorbing Markov chain of the
image graph. Taking the absorbing time from superpixels to
the image boundary nodes as their saliency values, the per-
formance of this method relies heavily on the transition
probability matrix, which encodes the similarities and dis-
similarities among image superpixels. To provide a precise
similarity measure, AMC exploits the deep color features
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Fig. 12. PR curves of two algorithms and their adaptions to the RGB-‘D’ saliency framework.

TABLE II

Fβ , W-Fβ , AUC, AND MAE SCORES OF TWO ALGORITHMS AND THEIR ADAPTIONS TO THE RGB-‘D’ SALIENCY FRAMEWORK

Fig. 13. Visual comparison of two algorithms and their adaptions to the
RGB-‘D’ saliency framework.

extracted from the fully convolutional network, i.e., FCN-32s
RGB [67], to learn the transition matrix. In this example,
we adopt a pre-trained depth network, FCN-32s HHA [67],
to obtain deep depth features. The HHA model is a three-
dimensional geometric depth model generated from a single
depth map. We use our pseudo depth map to generate a
HHA model, and then input this model into the pre-trained
FCN-32s HHA network to extract deep depth features from
the images. Afterwards, the deep depth features can be plugged
into the AMC framework to generate a new transition matrix
and correspondingly a new saliency map. Finally, we fuse
the depth-based saliency map with the original color-based
saliency map by average to get the final saliency map.

This example explores the performance of RGB-‘D’ saliency
by exploiting the pseudo depth to generate independent depth-
induced models.

B. Experimental Validation

To evaluate the performance of our RGB-‘D’ saliency
framework, we conduct both quantitative and qualitative eval-
uations on the two models and their adaptions to the RGB-‘D’
saliency framework. As show in Fig. 12, both methods have
significant improvements on their PR curves after adaption.
They also have better Fβ , w-Fβ , AUC and MAE scores in
most cases (Table II). The visual comparisons are provided
in Fig. 13. As we can see, the usage of pseudo depth improves
the object-level consistency of the salient objects and hence
is beneficial for performance enhancement. To summarize,
in addition to working as basic features or saliency pri-
ors, the pseudo depth can be considered as an additional
image channel or independent depth-induced models to assist
saliency detection, demonstrating the generalization ability of
the proposed RGB-‘D’ saliency detection concept.

VII. CONCLUSION

This paper proposed a new concept named RGB-‘D’
saliency detection by exploiting the pseudo depth extracted
from RGB-only images. Specifically, we developed a robust
pseudo depth measure based on the semi-inverse of the RGB
image, which has shown to be capable of perceiving the depth
information of various types of images. Taking the pseudo
depth as both a primary feature and the prior knowledge,
we then developed an RGB-‘D’ saliency algorithm termed
PDP. PDP is a straightforward and unsupervised approach,
for the ease of observing the effectiveness of the RGB-‘D’
saliency concept. Experiments conducted on four large bench-
mark databases validated the promising performance of PDP.
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Further, we adapted two existing RGB saliency models to the
RGB-‘D’ saliency framework. The performance enhancement
demonstrated the good generalization ability of the RGB-‘D’
saliency framework.
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